Data Aggregation and Summary System
Overview
The Finale GraphQL API provides a powerful aggregation system that enables you to calculate metrics and perform dimensional analysis across your data, similar to SQL's GROUP BY with aggregate functions like SUM, AVG, MIN, MAX, and COUNT.
Key Capabilities
The aggregation system is available on all 24 ViewConnection types in the API and enables you to:
- Calculate Metrics: Aggregate data using operators like sum, mean (average), min, and max
- Group by Dimensions: Break down metrics by categories, time periods, suppliers, customers, and other dimensions
- Build Dashboards: Create analytics dashboards and reports with KPIs
- Analyze Trends: Track performance over time with date-based grouping
- Generate Reports: Create summary reports without fetching individual records
How It Works
The aggregation system adds a summary field to any ViewConnection query. This field returns calculated metrics and dimensional groupings separately from the main edges data, allowing you to:
- Get aggregated results without fetching individual items
- Apply filters at the query level to narrow down what's aggregated
- Request multiple metrics and groupings in a single query
- Handle aggregation errors independently from the main query
Important Concept: Parallel Arrays
Aggregation results use aligned arrays where each index position corresponds across all metrics and groupBy dimensions:
{
groupBy: {
category: ["Electronics", "Clothing", "Home & Garden"]
},
metrics: {
totalStock: [15230, 28450, 12890],
totalSales: [8934, 15678, 7234]
}
}In this example, groupBy.category[0] ("Electronics") corresponds to metrics.totalStock[0] (15230) and metrics.totalSales[0] (8934).
Supported Collections
All 24 Collections Support Metrics:
buildViewConnection, consolidatedItemViewConnection, facilityViewConnection,
generalLedgerAccountViewConnection, generalLedgerViewConnection, invoiceItemViewConnection,
invoiceViewConnection, journalEntryItemViewConnection, journalEntryViewConnection,
orderItemViewConnection, orderViewConnection, partyViewConnection, paymentViewConnection,
productLookupViewConnection, productStoreViewConnection, productViewConnection,
quickTransferViewConnection, returnItemViewConnection, returnViewConnection,
shipmentViewConnection, stockHistoryViewConnection, stockViewConnection,
userLoginViewConnection, varianceViewConnection
9 Collections Support GroupBy (Dimensional Analysis):
invoice, invoiceItem, journalEntry, journalEntryItem, order, orderItem,
payment, product, returnItem
Collections without GroupBy support can still calculate metrics, but cannot break down results by dimensions.
Basic Usage
Query Structure
To use aggregation, add the summary field to any ViewConnection query:
{collectionName}ViewConnection(filters...) {
summary {
errorCode
errorMessage
metrics { ... }
groupBy { ... } # Only available on 9 collections
}
}Field Descriptions:
errorCode: Error code if aggregation fails (null on success)errorMessage: Human-readable error message (null on success)metrics: The aggregated values you requestedgroupBy: The dimensional groupings (only on supported collections)
Important Notes:
- Aggregations can fail independently of the main query - always check
errorCodebefore using results - Even when only using
summary, ViewConnection queries still require a pagination parameter likefirst: 1 - Filters applied to the ViewConnection affect what data is aggregated
Simple Example: Counting Products
query {
productViewConnection(first: 1, category: ["Electronics"]) {
summary {
errorCode
errorMessage
metrics {
totalProducts: count
}
}
}
}Result:
{
"data": {
"productViewConnection": {
"summary": {
"errorCode": null,
"errorMessage": null,
"metrics": {
"totalProducts": [1523]
}
}
}
}
}Note that count returns an array with a single element [1523] even though there's no grouping. All metrics return arrays.
Metrics: Aggregating Data
Metrics are calculated values derived from your data using aggregation operators.
Universal Metric: Count
Every collection supports the count metric, which returns the number of items matching your filters:
metrics {
itemCount: count
}Return Type
All metrics return [Float] (array of floats). When there's no grouping, the array contains one element. With grouping, there's one element per group.
Aggregation Operators
Most metrics accept an operator parameter to specify how values should be aggregated:
| Operator | Description | Example Use Case |
|---|---|---|
sum | Sum all values | Total sales revenue, total quantity |
mean | Calculate average | Average order value, average price |
min | Find minimum value | Earliest order date, lowest price |
max | Find maximum value | Latest shipment date, highest quantity |
Transform Parameter
Some metrics also accept a transform parameter:
| Transform | Description | Use Case |
|---|---|---|
abs | Apply absolute value | Aggregate magnitudes ignoring positive/negative |
Using GraphQL Aliases
GraphQL aliases let you request the same metric multiple times with different operators:
metrics {
totalStock: stock(operator: sum)
avgStock: stock(operator: mean)
maxStock: stock(operator: max)
minStock: stock(operator: min)
productCount: count
}Field-Specific Parameters
Many metrics accept additional parameters to filter or configure what's aggregated. Common parameters include:
dateRange: { start: "2024-01-01", end: "2024-12-31" }- Filter metrics by date rangefacilityUrlList: ["facility1", "facility2"]- Filter by specific facilitiesproductUrlList: [...]- Filter by specific products- Various enum parameters for aggregation methods and options
The available parameters vary by collection and metric. See the Discovering Available Metrics section to explore what's available.
Example: Multiple Metrics Without Grouping
query {
productViewConnection(
first: 1
category: ["Electronics"]
) {
summary {
errorCode
errorMessage
metrics {
totalProducts: count
totalStock: stock(operator: sum, facilityUrlList: ["warehouse1"])
avgPrice: averageGrossSalesPerUnit(
operator: mean
dateRange: { start: "2024-01-01", end: "2024-12-31" }
)
minPrice: averageGrossSalesPerUnit(operator: min)
maxPrice: averageGrossSalesPerUnit(operator: max)
}
}
}
}Result:
{
"data": {
"productViewConnection": {
"summary": {
"errorCode": null,
"errorMessage": null,
"metrics": {
"totalProducts": [1523],
"totalStock": [45230.5],
"avgPrice": [29.99],
"minPrice": [5.99],
"maxPrice": [299.99]
}
}
}
}
}Example: Order Metrics
query {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
errorCode
errorMessage
metrics {
orderCount: count
totalRevenue: total(operator: sum)
avgOrderValue: total(operator: mean)
totalUnits: totalUnits(operator: sum)
earliestOrder: orderDate(operator: min)
latestOrder: orderDate(operator: max)
}
}
}
}Result:
{
"data": {
"orderViewConnection": {
"summary": {
"errorCode": null,
"errorMessage": null,
"metrics": {
"orderCount": [2847],
"totalRevenue": [482950.75],
"avgOrderValue": [169.68],
"totalUnits": [8934],
"earliestOrder": ["2024-01-02T08:15:00Z"],
"latestOrder": ["2024-12-30T16:45:00Z"]
}
}
}
}
}Common Metrics by Collection
Product Metrics (24 total):
count, stock, stockOnHand, stockReserved, stockOnOrder, stockAvailable, stockAllocated,
stockInboundQuantity, reorderQuantityToOrder, replenishmentQuantityToOrder, unitSales,
grossSales, cogsSales, marginSales, countSales, averageGrossSalesPerUnit, averageUnitsPerSale,
neqPerUnit, lastPurchaseLandedCostPerUnit, lastPurchasePrice, reorderVariance,
unitSalesForSalesVelocity, reorderQuantityToOrderEditable, replenishmentQuantityToOrderEditable
Order Metrics (12 total):
count, orderDate, subtotal, taxableSubtotal, total, netSales, totalUnits,
totalTaxDiscountsAndFees, totalAverageCost, grossIncome, grossMargin, shipmentPendingValue
Invoice Metrics (4 total):
count, total, subtotal, balance
GroupBy: Dimensional Analysis
GroupBy enables you to break down metrics by dimensions (categories, time periods, suppliers, etc.), similar to SQL's GROUP BY clause.
Availability
Only 9 of 24 collections support GroupBy:
- invoice
- invoiceItem
- journalEntry
- journalEntryItem
- order
- orderItem
- payment
- product
- returnItem
Other collections support metrics-only aggregation.
Return Type
All groupBy fields return [String] (array of strings), with one element per unique group value.
Array Alignment
The most critical concept: groupBy arrays and metrics arrays align by index position:
{
groupBy: {
category: ["Electronics", "Clothing", "Home & Garden"]
},
metrics: {
productCount: [523, 892, 654],
totalStock: [15230, 28450, 12890]
}
}This means:
- "Electronics" has 523 products with 15,230 total stock
- "Clothing" has 892 products with 28,450 total stock
- "Home & Garden" has 654 products with 12,890 total stock
Formatter Parameter
GroupBy fields accept an optional formatter parameter to control how values are displayed:
| Formatter | Description |
|---|---|
"html" | HTML formatted with links |
"none" | Raw value without formatting |
"abbreviated" | Shortened version |
"blank-zero" | Empty string for zero values |
groupBy {
category: category(formatter: "none")
}Single Dimension Grouping
Group by one dimension to see metrics broken down by that dimension:
query {
productViewConnection(first: 1) {
summary {
errorCode
errorMessage
groupBy {
category: category
}
metrics {
productCount: count
totalStock: stock(operator: sum)
totalSales: unitSales(
operator: sum
dateRange: { start: "2024-01-01", end: "2024-12-31" }
)
}
}
}
}Result:
{
"data": {
"productViewConnection": {
"summary": {
"errorCode": null,
"errorMessage": null,
"groupBy": {
"category": ["Electronics", "Clothing", "Home & Garden"]
},
"metrics": {
"productCount": [523, 892, 654],
"totalStock": [15230, 28450, 12890],
"totalSales": [8934, 15678, 7234]
}
}
}
}
}Multiple Dimension Grouping
Request multiple dimensions to create more detailed breakdowns:
query {
productViewConnection(first: 1, category: ["Electronics"]) {
summary {
groupBy {
category: category
supplier: supplier1
}
metrics {
productCount: count
totalStock: stock(operator: sum)
}
}
}
}Result:
{
"data": {
"productViewConnection": {
"summary": {
"groupBy": {
"category": ["Electronics", "Electronics", "Electronics"],
"supplier": ["Supplier A", "Supplier B", "Supplier C"]
},
"metrics": {
"productCount": [150, 250, 123],
"totalStock": [5200, 7800, 2230]
}
}
}
}
}This shows three groups: Electronics from Supplier A (150 products), Electronics from Supplier B (250 products), and Electronics from Supplier C (123 products).
Hierarchical Grouping
For hierarchical analysis (like category → subcategory), you can use aliases like group and subgroup:
groupBy {
group: category
subgroup: supplier1
}This is a naming convention used in Finale's dashboard UI for two-level hierarchical grouping, but you can use any alias names you prefer.
Example: Orders by Date and Customer
query {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
groupBy {
orderMonth: orderDate
customer: partyUrl
}
metrics {
orderCount: count
revenue: total(operator: sum)
avgOrderValue: total(operator: mean)
units: totalUnits(operator: sum)
}
}
}
}Common GroupBy Dimensions
Product Dimensions (4 total):
category, supplier1, supplier2, supplier3
Order Dimensions: Available dimensions include order date, customer (party), location, and other order attributes. Check your schema for the complete list.
Invoice Dimensions: Available dimensions include invoice date, customer, and other invoice attributes.
Advanced Patterns
Pattern 1: Combining Filters with Summaries
Filters applied to the ViewConnection narrow down what's aggregated:
query {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
status: ["COMPLETED"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
# Only aggregates completed sales orders from 2024
metrics {
count: count
revenue: total(operator: sum)
}
}
}
}This pattern is essential for focused analytics: apply broad filters at the query level, then use groupBy to break down the filtered dataset.
Pattern 2: Aggregations Without Fetching Items
When you only need aggregated data, fetch minimal items to reduce data transfer:
query {
productViewConnection(first: 1) {
edges {
node {
productId # Minimal field
}
}
summary {
# Get complete aggregations without fetching all products
groupBy {
category: category
}
metrics {
productCount: count
totalStock: stock(operator: sum)
avgPrice: averageGrossSalesPerUnit(operator: mean)
}
}
}
}This pattern is useful for dashboards and reports where you don't need individual item details.
Pattern 3: Date-Based Grouping
Date dimensions can be grouped by different time periods using operators:
query {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
groupBy {
week: orderDate # Can use operators like DAY, WEEK, MONTH, QUARTER, YEAR
}
metrics {
orders: count
revenue: total(operator: sum)
units: totalUnits(operator: sum)
}
}
}
}The specific date operators available depend on the field. Check your schema or use introspection to discover what's available.
Pattern 4: Handling Null and Empty Results
Always check for errors and handle empty arrays:
const summary = data?.productViewConnection?.summary
if (summary?.errorCode) {
console.error('Aggregation failed:', summary.errorMessage)
return
}
const productCount = summary?.metrics?.totalProducts?.[0] ?? 0
const categories = summary?.groupBy?.category ?? []
if (categories.length === 0) {
console.log('No categories found')
}Pattern 5: Multiple Metrics with Different Parameters
Use aliases to request the same metric with different filters:
query {
productViewConnection(first: 1) {
summary {
metrics {
totalStock: stock(operator: sum)
warehouse1Stock: stock(operator: sum, facilityUrlList: ["warehouse1"])
warehouse2Stock: stock(operator: sum, facilityUrlList: ["warehouse2"])
q1Sales: unitSales(
operator: sum
dateRange: { start: "2024-01-01", end: "2024-03-31" }
)
q2Sales: unitSales(
operator: sum
dateRange: { start: "2024-04-01", end: "2024-06-30" }
)
}
}
}
}Pattern 6: Processing Results into Tables
Transform parallel arrays into row-based data for display:
// Based on Finale dashboard code
function transposeToTable(summary) {
const { groupBy, metrics } = summary
// Get array length from first groupBy or metric
const length = Object.values(groupBy)[0]?.length ?? Object.values(metrics)[0]?.length ?? 0
// Create row for each index
const rows = []
for (let i = 0; i < length; i++) {
const row = {}
// Add groupBy values
Object.keys(groupBy).forEach(key => {
row[key] = groupBy[key][i]
})
// Add metric values
Object.keys(metrics).forEach(key => {
row[key] = metrics[key][i]
})
rows.push(row)
}
return rows
}
// Usage
const rows = transposeToTable(data.productViewConnection.summary)
// Result: [
// { category: "Electronics", productCount: 523, totalStock: 15230 },
// { category: "Clothing", productCount: 892, totalStock: 28450 },
// { category: "Home & Garden", productCount: 654, totalStock: 12890 }
// ]Complete Real-World Examples
Example 1: Product Analytics Dashboard
This example shows how to build a comprehensive product analytics view with multiple perspectives:
query ProductAnalytics {
# Analysis by Category
byCategory: productViewConnection(first: 1) {
summary {
errorCode
errorMessage
groupBy {
category: category
}
metrics {
products: count
totalStock: stock(operator: sum)
avgStock: stock(operator: mean)
lowStock: stock(operator: min)
highStock: stock(operator: max)
totalValue: neqPerUnit(operator: sum)
}
}
}
# Analysis by Supplier
bySupplier: productViewConnection(first: 1) {
summary {
errorCode
errorMessage
groupBy {
supplier: supplier1
}
metrics {
products: count
reorderNeeded: reorderQuantityToOrder(operator: sum)
totalCost: lastPurchaseLandedCostPerUnit(operator: sum)
avgLeadTime: stock(operator: mean)
}
}
}
# Overall Totals
totals: productViewConnection(first: 1) {
summary {
errorCode
errorMessage
metrics {
totalProducts: count
totalStock: stock(operator: sum)
totalValue: neqPerUnit(operator: sum)
avgValue: neqPerUnit(operator: mean)
}
}
}
# Low Stock Alert
lowStock: productViewConnection(
first: 10
stockStatus: ["LOW"]
) {
summary {
errorCode
errorMessage
metrics {
lowStockCount: count
reorderNeeded: reorderQuantityToOrder(operator: sum)
}
}
}
}Example 2: Sales Analysis by Time Period
Track sales performance over time with multiple metrics:
query SalesAnalysis {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
status: ["COMPLETED"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
errorCode
errorMessage
groupBy {
month: orderDate # Groups by month
}
metrics {
orders: count
revenue: total(operator: sum)
avgOrderValue: total(operator: mean)
minOrderValue: total(operator: min)
maxOrderValue: total(operator: max)
units: totalUnits(operator: sum)
avgUnitsPerOrder: totalUnits(operator: mean)
grossMargin: grossMargin(operator: sum)
avgMargin: grossMargin(operator: mean)
netSales: netSales(operator: sum)
}
}
}
}Processing the results:
const { summary } = data.orderViewConnection
if (summary.errorCode) {
console.error('Failed to load sales data:', summary.errorMessage)
return
}
// Transform into chart-friendly format
const chartData = summary.groupBy.month.map((month, i) => ({
month,
orders: summary.metrics.orders[i],
revenue: summary.metrics.revenue[i],
avgOrderValue: summary.metrics.avgOrderValue[i],
units: summary.metrics.units[i],
margin: summary.metrics.grossMargin[i]
}))
// Calculate totals
const totals = {
orders: summary.metrics.orders.reduce((a, b) => a + b, 0),
revenue: summary.metrics.revenue.reduce((a, b) => a + b, 0),
units: summary.metrics.units.reduce((a, b) => a + b, 0)
}
// Calculate year-over-year growth
const revenueByMonth = summary.metrics.revenue
const avgMonthlyRevenue = revenueByMonth.reduce((a, b) => a + b, 0) / revenueByMonth.lengthExample 3: Product Sales Performance
Analyze which products are performing best:
query ProductSalesPerformance {
orderItemViewConnection(
first: 1
orderDate: { start: "2024-01-01", end: "2024-12-31" }
orderType: ["SALES_ORDER"]
) {
summary {
errorCode
errorMessage
groupBy {
product: productUrl
}
metrics {
quantitySold: quantity(operator: sum)
revenue: total(operator: sum)
avgPrice: price(operator: mean)
orderCount: count
avgQuantityPerOrder: quantity(operator: mean)
}
}
}
}Example 4: Customer Analysis
Segment customers by purchase behavior:
query CustomerAnalysis {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
status: ["COMPLETED"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
errorCode
errorMessage
groupBy {
customer: partyUrl
}
metrics {
orderCount: count
totalSpent: total(operator: sum)
avgOrderValue: total(operator: mean)
totalUnits: totalUnits(operator: sum)
firstOrder: orderDate(operator: min)
lastOrder: orderDate(operator: max)
}
}
}
}Processing for customer segmentation:
const { summary } = data.orderViewConnection
if (!summary.errorCode) {
const customers = summary.groupBy.customer.map((customer, i) => ({
customer,
orderCount: summary.metrics.orderCount[i],
totalSpent: summary.metrics.totalSpent[i],
avgOrderValue: summary.metrics.avgOrderValue[i],
totalUnits: summary.metrics.totalUnits[i],
firstOrder: summary.metrics.firstOrder[i],
lastOrder: summary.metrics.lastOrder[i]
}))
// Segment customers
const vipCustomers = customers.filter(c => c.totalSpent > 10000)
const regularCustomers = customers.filter(c => c.totalSpent >= 1000 && c.totalSpent <= 10000)
const newCustomers = customers.filter(c => c.orderCount === 1)
console.log(`VIP Customers: ${vipCustomers.length}`)
console.log(`Regular Customers: ${regularCustomers.length}`)
console.log(`New Customers: ${newCustomers.length}`)
}Example 5: Inventory Reorder Analysis
Identify products that need reordering:
query ReorderAnalysis {
productViewConnection(first: 1) {
summary {
errorCode
errorMessage
groupBy {
category: category
supplier: supplier1
}
metrics {
productsNeedingReorder: count
totalReorderQuantity: reorderQuantityToOrder(operator: sum)
estimatedCost: lastPurchaseLandedCostPerUnit(operator: sum)
currentStock: stock(operator: sum)
avgReorderPoint: reorderQuantityToOrder(operator: mean)
}
}
}
}Performance Considerations
Understanding Performance Impact
Aggregations can be computationally expensive, especially on large datasets. Consider these factors:
- Dataset Size: Larger datasets take longer to aggregate
- Number of Groups: More unique group values increase processing time
- Number of Metrics: Each metric requires calculation across all data
- Complex Parameters: Metrics with field-specific parameters (like date ranges) may require additional filtering
Optimization Strategies
1. Apply Filters at Query Level
Reduce the dataset before aggregation by applying filters:
# Less efficient - aggregating all orders
query {
orderViewConnection(first: 1) {
summary {
metrics {
revenue: total(operator: sum)
}
}
}
}
# More efficient - aggregating filtered orders
query {
orderViewConnection(
first: 1
type: ["SALES_ORDER"]
status: ["COMPLETED"]
orderDate: { start: "2024-01-01", end: "2024-12-31" }
) {
summary {
metrics {
revenue: total(operator: sum)
}
}
}
}2. Use Minimal Pagination When Only Using Summary
When you only need aggregations, fetch minimal items:
query {
productViewConnection(first: 1) { # Fetch only 1 item
edges {
node { productId } # Minimal fields
}
summary {
# Complete aggregations
metrics { ... }
}
}
}3. Request Only Needed Metrics
Don't request metrics you won't use:
# Less efficient - requesting many unused metrics
metrics {
metric1: field1(operator: sum)
metric2: field2(operator: sum)
metric3: field3(operator: sum)
metric4: field4(operator: sum)
# ... 10 more metrics you don't need
}
# More efficient - only what you need
metrics {
revenue: total(operator: sum)
orderCount: count
}4. Consider Parallel Queries for Different Analyses
Instead of one complex query with many dimensions, split into multiple focused queries:
# Can run in parallel for better performance
query Analytics {
byCategory: productViewConnection(first: 1) {
summary {
groupBy { category: category }
metrics { count: count, stock: stock(operator: sum) }
}
}
bySupplier: productViewConnection(first: 1) {
summary {
groupBy { supplier: supplier1 }
metrics { count: count, stock: stock(operator: sum) }
}
}
}Performance Best Practices Summary
- Always apply filters at the ViewConnection level to reduce dataset size
- Use
first: 1when only using summary data - Request only the metrics and dimensions you need
- Consider date range filters to limit aggregation scope
- Test performance with realistic data volumes
- Monitor for timeouts on large datasets
Error Handling
Aggregations can fail independently of the main query, so proper error handling is essential.
Error Response Structure
When an aggregation fails, the response includes error information:
{
"data": {
"productViewConnection": {
"summary": {
"errorCode": "AGGREGATION_TIMEOUT",
"errorMessage": "Aggregation exceeded maximum execution time",
"metrics": null,
"groupBy": null
}
}
}
}Note that the main query can succeed even when the aggregation fails.
Always Check ErrorCode
Always check errorCode before using aggregation results:
const summary = data?.productViewConnection?.summary
if (!summary) {
console.error('No summary data returned')
return
}
if (summary.errorCode) {
console.error('Aggregation error:', {
code: summary.errorCode,
message: summary.errorMessage
})
// Show error to user or fall back to alternative approach
return
}
// Safe to use metrics and groupBy
const productCount = summary.metrics.totalProducts[0]Common Error Scenarios
1. Timeout on Large Datasets
if (summary.errorCode === 'AGGREGATION_TIMEOUT') {
console.warn('Aggregation timed out - try adding more filters to reduce dataset size')
// Suggest user applies date range or other filters
}2. Invalid Operator for Field Type
# This might fail if the field doesn't support the operator
metrics {
result: textField(operator: sum) # Can't sum text values
}3. Permission Issues
if (summary.errorCode === 'PERMISSION_DENIED') {
console.error('User does not have permission to aggregate this data')
// Hide or disable aggregation features
}4. Invalid Parameter Combinations
# Some parameter combinations may be invalid
metrics {
stock: stock(
operator: sum
facilityUrlList: ["invalid-facility"]
# Invalid facility might cause an error
)
}Best Practices for Error Handling
1. Defensive Data Access
Use optional chaining and nullish coalescing:
const productCount = summary?.metrics?.totalProducts?.[0] ?? 0
const categories = summary?.groupBy?.category ?? []
const hasError = Boolean(summary?.errorCode)2. Graceful Degradation
Provide fallback experiences when aggregations fail:
function renderProductStats(data) {
const summary = data?.productViewConnection?.summary
if (summary?.errorCode) {
// Fall back to showing message
return (
<Alert type="warning">
Unable to load statistics. {summary.errorMessage}
</Alert>
)
}
// Render full stats
return (
<StatsPanel>
<Stat label="Total Products" value={summary.metrics.totalProducts[0]} />
<Stat label="Total Stock" value={summary.metrics.totalStock[0]} />
</StatsPanel>
)
}3. User-Friendly Error Messages
Translate error codes to helpful messages:
function getErrorMessage(errorCode, errorMessage) {
const messages = {
'AGGREGATION_TIMEOUT': 'This query is taking too long. Try narrowing your search with filters.',
'PERMISSION_DENIED': 'You do not have permission to view these statistics.',
'INVALID_OPERATOR': 'The selected calculation is not available for this field.',
'INVALID_PARAMETERS': 'Invalid filter settings. Please check your selections.'
}
return messages[errorCode] || errorMessage || 'An error occurred loading statistics.'
}4. Retry with Simpler Query
If a complex aggregation fails, try a simpler version:
async function fetchProductStats(filters) {
try {
// Try full aggregation with grouping
const result = await client.query({
query: PRODUCT_STATS_WITH_GROUPING,
variables: filters
})
if (result.data?.productViewConnection?.summary?.errorCode) {
// Fall back to metrics-only
return fetchProductStatsSimple(filters)
}
return result
} catch (error) {
console.error('Failed to fetch product stats:', error)
return null
}
}
async function fetchProductStatsSimple(filters) {
// Simpler query without groupBy
return client.query({
query: PRODUCT_STATS_NO_GROUPING,
variables: filters
})
}5. Logging and Monitoring
Log aggregation errors for monitoring and debugging:
function logAggregationError(queryName, errorCode, errorMessage, filters) {
console.error('Aggregation failed', {
query: queryName,
errorCode,
errorMessage,
filters,
timestamp: new Date().toISOString()
})
// Send to monitoring service
analytics.track('aggregation_error', {
query: queryName,
errorCode
})
}Discovering Available Metrics and Dimensions
Different collections support different metrics and groupBy dimensions. Here's how to discover what's available.
Collection-Specific Documentation
Each collection type has its own set of available metrics and dimensions. Refer to the collection-specific documentation pages for complete lists:
- Product Collection: Lists all 24+ product metrics and 4 groupBy dimensions
- Order Collection: Lists all 12+ order metrics and available groupBy dimensions
- Invoice Collection: Lists invoice metrics and dimensions
- And so on for all 24 collections
Using GraphQL Introspection
You can dynamically discover available metrics and their parameters using GraphQL introspection:
Discovering Metrics
query {
__type(name: "productViewConnectionSummaryMetric") {
fields {
name
description
type {
name
kind
ofType { name }
}
args {
name
description
type {
name
kind
ofType { name }
}
}
}
}
}This returns all available metrics for the product collection, including:
- Metric names
- Return types (always
[Float]) - Available parameters (operator, transform, etc.)
- Parameter types and whether they're required
Discovering GroupBy Dimensions
query {
__type(name: "productViewConnectionSummaryGroupBy") {
fields {
name
description
type {
name
kind
ofType { name }
}
args {
name
description
type {
name
kind
ofType { name }
}
}
}
}
}This returns all available groupBy dimensions for the product collection.
Discovering Operator Enums
query {
__type(name: "SummarizeOperator") {
enumValues {
name
description
}
}
}Returns: sum, mean, min, max
query {
__type(name: "SummarizeTransform") {
enumValues {
name
description
}
}
}Returns: abs
Finding Collections with GroupBy Support
To determine which collections support groupBy, look for types ending in ViewConnectionSummaryGroupBy:
# Using schema file
jq -r '.data.__schema.types[] | select(.name | endswith("ViewConnectionSummaryGroupBy")) | .name | sub("ViewConnectionSummaryGroupBy"; "")' schema.json | sortReturns:
invoice
invoiceItem
journalEntry
journalEntryItem
order
orderItem
payment
product
returnItem
Programmatic Discovery
Build tools to explore the schema programmatically:
async function getAvailableMetrics(collectionName) {
const typeName = `${collectionName}ViewConnectionSummaryMetric`
const result = await client.query({
query: gql`
query {
__type(name: "${typeName}") {
fields {
name
args {
name
type {
name
kind
ofType { name kind }
}
}
}
}
}
`
})
return result.data.__type.fields
}
async function supportsGroupBy(collectionName) {
const typeName = `${collectionName}ViewConnectionSummaryGroupBy`
const result = await client.query({
query: gql`
query {
__type(name: "${typeName}") {
name
fields { name }
}
}
`
})
return result.data.__type !== null
}
// Usage
const productMetrics = await getAvailableMetrics('product')
console.log(`Product supports ${productMetrics.length} metrics`)
const hasGroupBy = await supportsGroupBy('product')
console.log(`Product supports groupBy: ${hasGroupBy}`)GraphQL Playground/IDE
Most GraphQL development tools provide built-in schema exploration:
- GraphQL Playground: Docs tab shows all types and fields
- GraphiQL: Documentation Explorer panel
- Apollo Studio: Schema tab with search and filtering
These tools let you browse the schema interactively and see:
- All available collections
- Metrics for each collection
- GroupBy dimensions for collections that support it
- Parameters and their types
- Descriptions and usage notes
Summary
The Finale GraphQL API's aggregation system provides powerful data analysis capabilities:
Key Takeaways
- Universal Availability: All 24 collections support metrics aggregation
- Selective GroupBy: 9 collections support dimensional grouping
- Parallel Arrays: GroupBy and metrics arrays align by index position
- Flexible Operators: Use sum, mean, min, max to aggregate data
- Filter First: Apply ViewConnection filters to reduce aggregation scope
- Error Handling: Always check errorCode before using results
- Performance Matters: Use filters, caching, and minimal pagination
- Discoverable: Use introspection to explore available metrics and dimensions
Common Use Cases
- Dashboards: Real-time KPIs and performance metrics
- Reports: Summary reports with dimensional breakdowns
- Analytics: Trend analysis and pattern discovery
- Inventory: Stock levels and reorder analysis
- Sales: Revenue tracking and customer analysis
- Financial: Invoice and payment summaries
Next Steps
- Review collection-specific documentation for complete metric and dimension lists
- Experiment with simple queries (count without grouping)
- Add groupBy for dimensional analysis
- Build complex analytics with multiple metrics
- Implement error handling and caching
- Optimize performance with filters and minimal pagination
The aggregation system is one of the most powerful features of the Finale GraphQL API, enabling sophisticated data analysis without complex client-side processing.
